What Is Precision Machining?

Posted on Jul 13, 2021

Precision Machining

1. What Is Precision Machining?

Precision machining is an advanced manufacturing technique used to produce machines, components, and accessories by removing excess material at a very high quality. As the name implies the finished product must meet very rigorous machining finish tolerances and accuracy requirements. Precision machining is used to produce many large and small components of machines that are used to create objects in our everyday life. As these objects are made up of many small parts, we need high-precision operations to ensure that these small parts fit together precisely and function as intended.

A lot of different factors have to come together to allow for reliable, high-precision cutting results. You need an advanced machine tool, CNC program as well as a knowledgeable operator to get the most of your machining operations. High-accuracy manufacturing didn' just come to life out of the blue. It underwent an evolution and advancement of technologies, which helped push the limits of machining processes. A defining example would be the incorporation of computer-controlled design that improved performance significantly and consistently, which is also why it is closely associated with the term “CNC machining”. However, the target tolerances for a precision machining process are much more rigorous. Therefore if you are looking for a supplier that offers precision CNC machining services, there are quite a few things to consider.

Precision Bearings
Fig.1 Precision Bearings

CNC precision manufacturing encompasses a wide range of manufacturing operations such as cutting, cnc milling, cnc turning, electrical discharge machining, and others. Conversely, it sees applications in many different industries such as automotive, medical, aerospace, defense, and so on. Typical precision machining targets include precision locknuts, micro components, and thread grinding.

2. Applications and Capabilities

You can use precision machining to create a myriad of products, items, and parts for any number of different objects of various sizes. One thing all of these components requiring precision cutting operations have in common is that they all require tight tolerances variation from part to part, meaning errors in the production of the pieces have to be kept at the very minimum. Required tolerances can go down to a margin of just 0.01mm to 0.05mm - talk about precision! This is why this process features repeatability and a well-controlled production process.

Furthermore, precision machining allows parts and products to be designed to maintain extremely high tolerances and a high level of durability for the robust finishes of the products. What you need to realize is that not only is ultra-precision required to produce parts flawlessly and reliably, but making sure that these parts can be produced with the highest level of consistency is just as crucial.

precision grinding
Fig.2 Precision Grinding

Another application of precision engineering is when you need to repair or restore tools or components. Anyone working in the manufacturing sector will be aware of this, because most machines, tools, and components all require calibration and check-ups to maintain or restore them to their original state after using them for some time. The most frequently used manufacturing equipment is computer-controlled heavy-duty machinery that is meant to remove substrate material to create intricate components and parts. Sometimes, high-speed robotics and photochemical processes may even be used to fulfill the intended result for the finished component.

Whether or not a precision components provider has the necessary precision machining capabilities depends on the experience and technical knowledge of their engineers and designers, the quality of the precision CNC machine tools that they use, their precision inspection equipment, and their machine operators. OEM and ODM precision manufacturing service providers need to have the flexibility to machine components from different materials with specific designs and sometimes material requirements. Therefore, to compete in this area, a precision machining manufacturer needs to offer a whole turnkey solution including prototype design, testing, customizations, and ideally small-batch and mass production capabilities.

3. How Does Precision Manufacture Work?

Manufacturing at the highest precision possible is essentially a subtractive technology that utilizes custom software, engineered tools, and raw materials such as plastic, metal, and ceramic to create the desired fine-featured products. It is often undergone according to the instruction generated by computer-aided design (CAD) and computer-aided manufacturing (CAM) programs. These programs and the generated blueprints make meeting tight tolerances much easier. On a side note, many of these designs start as hand-drawn sketches in the initial phases despite eventually being fed into engineered and computer-aided programs.

To achieve the highest precision, the machining process of a component is split up into several steps. Each one contributes to high-accuracy parts that meet very high tolerances. As mentioned earlier, precision machining can involve different cutting operations, such as milling, turning, drilling, honing, grinding, and others. Usually, we can expect the following stages when it comes to ultra precision in today’s manufacturing world:

  • Customer Request with part drawings, material requirements, specs, etc.
  • Precision Components Supplier (re)designs the part and makes adjustments if necessary
  • Raw material Inspection
  • Prototype Machining & Testing
  • Primary Machining
  • Optional: Surface and/or Heat Treatment
  • Secondary Machining/Finishing
  • Inspection
  • Shipping
  • Many leading Precision Machining Providers also implement in-process inspections after each production step to ensure the highest precision and quality.

    4. Precision CNC = Skilled Operator+Software?

    Hgih-precision machinery supervisors or operators must be very familiar and experienced with different processes, equipment, and CNC software. They may even have to use a combination of mills, lathes, drills, grinders, and even automation equipment such as robotic arms or whole work cells. But running, operating, and overseeing a CNC machine is not just pushing a few buttons, even though modern precision machining tools do most of the heavy lifting for you. An ideal operator needs to be certified, trained, and educated with good communication skills and problem-solving abilities in case something unexpected happens.

    To summarize, here are some of the most important skills an operator has to possess to ensure a smooth cutting process:

  • A precision machinist needs to have excellent communication skills
  • He or she needs to be able to work with people from a culturally diverse background A precision machinist should have excellent problem-solving and analytical skills to ensure that the projects can always yield successful results.
  • Additionally, precision machinists should be competent and familiar with CAD and CAM software, technical drawings, computer-aided machining, product specification, Materials science, and metalworking theories
  • What is true for the single individual is true for the whole manufacturing SOP. A precision machining service provider needs to accompany the customer from the first consultation to the final quality assurance and beyond with after-sales services. Precision machining is about much more than manufacturing a lock nut or a chuck according to someone’s drawings and specifications. It involves planning, designing, customizing, and budgeting while integrating the necessary inspections and QA and QC procedures to ensure the final product meets the client’s expectations. Read our study case below (7. Study Case) to explore a real-life example.

    Fig.3 Precision Inspection

    The final factor we want to mention is the CNC software. To meet the crazy (micron-level) tolerances of precision machining in today’s manufacturing world, almost all professional suppliers of precision machined components make use of CNC software such as CAD and CAM. This software provides the designers, engineers, and operators with tools to plan out the machining operation. The skills and experience with this type of software and the ability to adapt to new technology are crucial to keeping up with the latest standards in the realm of precision machining.

    5. Advantages

    There are several advantages with the most important ones being:


    It can occur continuously without any breakdown no matter the time or day of the week. The raw materials are converted into the final product and ultimately released into the market as high-quality tools. One of the key upsides is that breakdowns are not likely to occur when maintenance is required or during a repair.

    Reduced human labor requirements

    Due to the significant advancement in technology over the years, precision machining in manufacturing industries is automated. The process is mainly controlled by robots or computers which minimal human labor to monitor them. This also hugely cut down production costs, as well as the need for supervision and oversight of the process.

    High production:

    Despite the intricate nature of the operation, it can generate substantially high productivity by tending to a massive amount of work such as drilling, finishing, milling, spinning, etc. in a relatively short period.

    Consistent results:

    Despite the high production rate, the finished products are identical and have very little chance of errors. The resulted products, in turn, become more marketable due to their high consistency, improved quality, and low faulty rate.

    Increased profit and reduced effort:

    A key benefit is that minimal effort is needed to yield optimal profits. The fact of the matter is that with a metal that undergoes precision machining, not only do you save production cost, but it will also save much of your time and effort which ultimately guarantees highly cost-efficient production.

    Increased accuracy

    Most of the objects and parts undergoing precision machining are used in the manufacturing industries. This includes places where manual turning and milling are required. It can also be utilized in the healthcare sector where accuracies are highly looked upon. In light of this, they are equipped with the ability to operate on a highly accurate basis, thereby completing the intended tasks effortlessly.

    Enhanced efficiency and quality

    When machining the objects and parts, they are always fitted with internal quality assurance detectors. This allows efficiency to be ascertained while the objects are being machined at a fast pace. Moreover, it is known for meeting high-level standards object working and parts fabrication. Along with the lessened expenditure cost (e.g. the expense on human labor, etc.), it is extremely cost-efficient that ensures both product quality and low money wastage.

    6. Study Case: YINSH Precision

    Fig.4 Yinsh Logo

    Precision Machining and Smart Manufacturing

    There are many machining services providers and OEM/ ODM companies that are rooted in Taiwan and export their components to the world market. YINSH Company located in the central metalworking supply chain is one of the most renowned suppliers for precision machining products, such as locknuts, machine tool components, thread grinding, and track scrapers. According to Vice President, Jack Wu, the company has exported to over 40 countries so far. Based on the automation solution YINSH offers its customers, their smart manufacturing system can track customers’ orders and take care of every detail at any given time.

    Manufacturing Conditions and QC

    YINSH adopts strict standards on all manufacturing procedures to ensure precision machining and quality at all stages. The R&D team, measuring step, and the manufacturing processes are all digitally monitored with their smart manufacturing integration system to make the optimum quality for the customer. All of their manufacturing plants also are in strict compliance with regulations and are inspected regularly for the well-being of the staff.

    Material Selection

    During the interview, one of the senior sales staff remarked that materials are crucial especially for customers in the EU in a particular context of precision machining. YINSH can assist customers with material selection and proceed to the drawing step for even more flexibility. The drawing step is an important stage for evaluating the geometric accuracy and dimensional accuracy of the drawings provided by the customers. Following compulsory processes like material analysis, heat treatment, and so on, YINSH validates the drawing with the customers to see if all the demands are met.

    Cutting-edge Labs

    There are many advanced labs inside the YINSH plants. One of them is the metrology lab, which contains CMM for the final quality control. YINSH has six advanced inspection devices in the lab, and the brands are all famous and reliable ones such as ZEISS and MITUTOYO. You can see one step in the inspection process for locknuts in the short clip below.

    A roundness tester and contour measuring system are included in the precision metrology lab, which is certified by the TAF, and many important issues such as temperature, humidity, and other critical conditions are controlled well in the lab. This ensures that all precision parts produced to meet the standard with things every detail and dimension are taken into account. YINSH wants to make sure they are on the same page with their customers.

    Automated Working Process

    Besides the small volume orders, once YINSH has received the manufacturing orders with large amounts. The question is how precision machining can be performed with such a large quantity? The answer lies in the automated production system inside the YINSH plant.

    With the same robotic arms and automated production lines, these manufacturing devices make sure that the manufacturing process is still with high standards. With the minimal reliance on manual operation, the quality control issues can be held to a steady level of standards.

    IMTS Exhibition

    IMTS gathered worldwide Precision Machining Service Providers om this online platform. Browse and search for your next supplier with us.

    Should you run into any difficulties, please do not hesitate to contact us.

    Quick Link to Suppliers

    0Inquiry Item Contact IMTS

    International Manufacturing Teletrading Sources (IMTS) is your key to unlock the door to the industry from anywhere around the world, at any time.